expyriment.misc.statistics¶
The statistics module.
This module contains miscellaneous stastistical functions for expyriment.
Functions¶
-
expyriment.misc.statistics.
frequence_table
(data)¶ OBSOLETE FUNCTION! Please use frequency_table!
-
expyriment.misc.statistics.
frequency_table
(data)¶ Returns the frequency table of the data as dictionary.
Parameters: - datalist
list of numerical data
Returns: - outdict
dict.keys : values, dict.values : frequencies
-
expyriment.misc.statistics.
mean
(data)¶ Returns the mean of data.
Parameters: - datalist
list of numerical data
Returns: - outfloat or None
Notes
The function ignores all non-numerical elements in the data and returns None if no numerical element has been found. In contrast to standard math and numpy functions, this function is robust against type violations.
-
expyriment.misc.statistics.
median
(data)¶ Returns the median of data.
Parameters: - datalist
list of numerical data
Returns: - outfloat or None
Notes
The function ignores all non-numerical elements in the data and returns None if no numerical element has been found. In contrast to standard math and numpy functions, this function is robust against type violations.
-
expyriment.misc.statistics.
mode
(data)¶ Returns the mode, that is, the most frequent value in data.
Parameters: - datalist
list of numerical data
Returns: - outfloat or None
-
expyriment.misc.statistics.
std
(data)¶ Returns the standard deviation of data.
Parameters: - datalist
list of numerical data
Returns: - outfloat or None
Notes
The function ignores all non-numerical elements in the data and returns None if no numerical element has been found. In contrast to standard math and numpy functions, this function is robust against type violations.
-
expyriment.misc.statistics.
variance
(data)¶ Returns the variance of data.
Parameters: - datalist
list of numerical data
Returns: - outfloat or None
Notes
The function ignores all non-numerical elements in the data and returns None if no numerical element has been found. In contrast to standard math and numpy functions, this function is robust against type violations.