Source code for expyriment.misc.data_preprocessing

"""Data Preprocessing Module.

This module contains several classes and functions that help
to handle, peprocessing and aggregate expyriment data files.

"""

__author__ = 'Florian Krause <florian@expyriment.org>, \
Oliver Lindemann <oliver@expyriment.org>'
__version__ = '0.6.3+'
__revision__ = '0a47722d7fb0'
__date__ = 'Fri Jul 26 11:31:53 2013 +0200'


import os as _os
import sys as _sys
import types as _types
from copy import copy as _copy
try:
    import numpy as _np
except:
    _np = None

[docs]def read_datafile(filename, only_header_and_variable_names=False): """Read an Expyriment data file. Returns the data, the variable names, the subject info & the comments: Parameters ---------- filename : str name (fullpath) of the expyriment data file only_header_and_variable_names : bool, optional if True the function reads only the header and variable names (default=False) Returns ------- data : list of list data array variables : list of str variable names list subject_info : dict dictionary with subject information (incl. date and between subject factors) comments : str string with remaining comments """ delimiter = "," variables = None subject_info = {} comments = "" data = [] fl = open(filename) for ln in fl: # parse infos ln = ln.strip() if not(ln.startswith("#")): if variables is None: variables = ln.split(delimiter) if only_header_and_variable_names: break else: data.append(ln.split(delimiter)) else: if ln.startswith("#s"): ln = ln.replace("#s", "") tmp = ln.replace("=", ":") tmp = tmp.split(":") if len(tmp) == 2: subject_info[tmp[0].strip()] = tmp[1].strip() else: subject_info["#s{0}".format(len(subject_info))] = ln.strip() elif ln.startswith("#date:"): ln = ln.replace("#date:", "") subject_info["date"] = ln.strip() else: comments = comments + "\n" + ln fl.close() # strip variables for x in range(len(variables)): variables[x] = variables[x].strip() return data, variables, subject_info, comments
[docs]def write_csv_file(filename, data, varnames=None, delimiter=','): """Write 2D data array to csv file. Parameters ---------- filename : str name (fullpath) of the data file data : list of list 2D array with data (list of list) variables : list of str, optional array of strings representing variable names delimiter : str, optional delimiter character (default=",") """ _sys.stdout.write("write file: {0}".format(filename)) with open(filename, 'w') as f: if varnames is not None: for c, v in enumerate(varnames): if c > 0: f.write(delimiter) f.write(v) f.write("\n") cnt = 0 for row in data: for c, v in enumerate(row): if c > 0: f.write(delimiter) f.write(v) cnt += 1 f.write("\n") print " ({0} cells in {1} rows)".format(cnt, len(data))
[docs]def write_concatenated_data(data_folder, file_name, output_file=None, delimiter=','): """Concatenate data and write it to a csv file. All files that start with this name will be considered for the analysis (cf. aggregator.data_files) Notes ----- The function is useful to combine the experimental data and prepare for further processing with other software. It basically wraps Aggregator.write_concatinated_data. Parameters ---------- data_folder : str folder which contains of data of the subjects (str) file_name : str name of the files output_file : str, optional name of data output file. If no specified data will the save to {file_name}.csv delimiter : str, optional delimiter character (default=",") """ return Aggregator(data_folder=data_folder, file_name=file_name)\ .write_concatenated_data(output_file=output_file, delimiter=delimiter)
[docs]class Aggregator(object): """A class implementing a tool to aggregate expyriment data. This class is used to handle the multiple data files of a experiment and preprocess (i.e, aggregate) the data for further analysis Examples -------- This tool helps, for instance, to aggregate your data for certain combinations of independent variables. E.g., data of a numerical magnitude judgement experiment. The code below makes a file with mean and median RTs and a second file with the errors and the number of trials:: from expyriment.misc import data_preprocessing agg = data_preprocessing.Aggregator(data_folder= "./mydata/", file_name = "MagnitudeJudgements") agg.set_computed_variables(["parity = target_number % 2", "size = target_number > 65"]) agg.set_independent_variables(["hand", "size" , "parity"]) agg.set_exclusions(["trial_counter < 0", "error != 0"]) agg.set_dependent_variables(["mean(RT)", "median(RT)"]) agg.aggregate(output_file="rts.csv") agg.set_exclusions(["trial_counter < 0"]) agg.set_dependent_variables(["sum(error)", "n_trials"]) agg.aggregate(output_file="errors.csv") """ _relations = ["==", "!=", ">", "<", ">=", "<=", "=>", "<="] _operations = [ "+", "-", "*", "/", "%"] _dv_functions = ["mean", "median", "sum", "std", "n_trials"] _default_suffix = ".xpd"
[docs] def __init__(self, data_folder, file_name, suffix=_default_suffix): """Create an aggregator. Parameters ---------- data_folder :str folder which contains of data of the subjects file_name : str name of the files. All files that start with this name will be considered for the analysis (cf. aggregator.data_files) suffix : str, optional if specified only files that end with this particular suffix will be considered (default=.xpd) """ if type(_np) is not _types.ModuleType: message = """Aggregator can not be initialized. The Python package 'numpy' is not installed.""" raise ImportError(message) _version = _np.version.version.split(".") if not _version[0] == 1 and _version[1] < 6: raise ImportError("Expyriment {0} ".format(__version__) + "is not compatible with Numpy {0}.".format( _np.version.version) + "\nPlease install Numpy 1.6 or higher.") print "** Expyriment Data Preprocessor **" self.reset(data_folder, file_name, suffix)
def __str__(self): """Getter for the current design as text string.""" design_str = "Data\n" design_str = design_str + "- file name: " + self._file_name + "\n" design_str = design_str + "- folder: " + self._data_folder + "\n" design_str = design_str + "- {0} subject_data sets\n".format( len(self._data_files)) design_str = design_str + "- {0} variables: {1}\n".format( len(self.variables), self.variables) design_str = design_str + "- recoded variables: {0}\n".format( self._recode_txt) design_str = design_str + "- computed variables: {0}\n".format( self._computes_txt) design_str = design_str + "Design\n" design_str = design_str + "- independent Variables: {0}\n".format( self._iv_txt) design_str = design_str + "- dependent Variables: {0}\n".format( self._dv_txt) design_str = design_str + "- exclude: {0}\n".format( self._exclusions_txt) return design_str def _parse_syntax(self, syntax, throw_exception): """Preprocess relation and operation syntax. Returns relation array. """ rels_ops = _copy(self._relations) rels_ops.extend(self._operations) found = None for ro in rels_ops: if syntax.find(ro) > 0: found = ro break if found is None: if throw_exception: raise RuntimeError("Incorrect syntax: '{0}'".format(syntax)) else: return None else: syntax = syntax.split(found) var_id = self._get_variable_id(syntax[0].strip(), True) return [var_id, found, syntax[1].strip()] def _get_variable_id(self, variables, throw_exception=False): for cnt, v in enumerate(self.variables): if variables == v: return cnt if (throw_exception): raise RuntimeError("Unknown variable name '{0}'".format(variables)) return None def _add_independent_variable(self, variable): var_id = self._get_variable_id(variable, True) self._iv.append(var_id) def _add_dependent_variable(self, variable): if variable == "n_trials": self._dv.append([variable, 0]) else: tmp = variable.replace(")", "").split("(") dv_fnc = tmp[0].strip() try: dv_txt = tmp[1].strip() except: raise RuntimeError("Incorrect syntax for DV: '{0}'".format( variable)) var_id = self._get_variable_id(dv_txt, True) if dv_fnc in self._dv_functions: self._dv.append([dv_fnc, var_id]) else: raise RuntimeError("Unknown function for dependent variable:" + " '{0}'".format(dv_fnc)) def _add_compute_variable(self, compute_syntax): """Add a new variable to be computed.""" tmp = compute_syntax.replace("==", "@@") # avoid confusion = & == tmp = tmp.replace("!=", "##") # avoid confusion = & == tmp = tmp.split("=") variable_name = tmp[0].strip() try: syntax = tmp[1].strip() syntax = syntax.replace("@@", "==") syntax = syntax.replace("##", "==") except: raise RuntimeError("Incorrect compute syntax: '{0}'".format( compute_syntax)) variable_def = self._parse_syntax(syntax, throw_exception=True) if variable_def is None: variable_def = self._parse_operation(syntax, throw_exception=True) if self._get_variable_id(variable_name) is not None: raise RuntimeError("Variable already defined '{0}'".format( variable_name)) else: self._variables.append(variable_name) self._computes.append([variable_name, variable_def]) def _add_exclusion(self, relation_syntax): """Add an exclusion.""" relation = self._parse_syntax(relation_syntax, throw_exception=True) if relation[1] in self._relations: self._exclusions.append(relation) else: raise RuntimeError("Incorrect exclusion syntax: '{0}'".format( relation_syntax)) def _add_variable_recoding(self, recode_syntax): """Add a new variable recoding rule.""" error = False tmp = recode_syntax.split(":") if len(tmp) == 2: var_id = self._get_variable_id(tmp[0].strip(), True) excl_array = [] for rule in tmp[1].split(","): rule = rule.split("=") if len(rule) == 2: excl_array.append([rule[0].strip(), rule[1].strip()]) else: error = True else: error = True if error: raise RuntimeError("Incorrect recoding syntax: '{0}'".format( recode_syntax)) else: self._recode.append([var_id, excl_array]) def _find_idx(self, data, column_id, relation, value): """Find the indices of elements in a data column. Notes ----- It compares of column elements with a value or the elements of a second column, if value is a name of variable. The method deals with numerical and string comparisons and throws an exception for invalied string comparisions. Parameters ---------- data : numpy.array the data column_id : int id of column to compare relation : str relation as string. possible relations: "==", "!=", ">", "<", ">=", "<=", "=>", "<=" value : numeric or string value to find or a variable name """ # is value a variable name second_var_id = self._get_variable_id(value, False) # _add_exclusion try: col = _np.float64(data[:, column_id]) if second_var_id is not None: val = _np.float64(data[:, second_var_id]) else: val = _np.float64(value) except: # handling strings col = data[:, column_id] if second_var_id is not None: val = data[:, second_var_id] else: val = value if relation == "!=": comp = (col != val) elif relation == "==": comp = (col == val) elif relation == "<": comp = (col < val) elif relation == ">": comp = (col > val) elif relation == "=<" or relation == "<=": comp = (col <= val) elif relation == "=>" or relation == ">=": comp = (col >= val) else: comp = None # should never occur return _np.flatnonzero(comp) def _get_new_variables(self, iv_values): """Return the new variables names and factor_combinations. Requires the values for all independent variables iv_values: 2d array. Adds furthermore the defined the subject variables. """ def increase_combination(comb, maxima, pos=None): """Recursive helper function. Returns None if end reached. """ if pos is None: pos = len(comb) - 1 comb[pos] += 1 # increase last position if comb[pos] > maxima[pos]: if pos <= 0: # end reached return None else: for x in range(pos, len(comb)): # set to zero & all pos. behind comb[x] = 0 return increase_combination(comb, maxima, pos - 1) # increase position before else: return comb # calc n levels n_levels = [] for x in iv_values: n_levels.append(len(x) - 1) # build new variables names factor_combinations = [] names = [] if len(iv_values) > 0: tmp_comb = _np.zeros(len(self._iv), dtype=int) while tmp_comb is not None: txt = "" comb_values = [] for c, x in enumerate(tmp_comb): comb_values.append(iv_values[c][x]) if len(txt) > 0: txt = txt + "_" txt = txt + "{0}{1}".format(self.variables[self._iv[c]], comb_values[-1]) names.append(txt) factor_combinations.append(comb_values) tmp_comb = increase_combination(tmp_comb, n_levels) new_variable_names = ["subject_id"] for sv in self.subject_variables: new_variable_names.append("{0}".format(sv)) for dv in self._dv: if dv[0] == "n_trials": dv_txt = "ntr" else: dv_txt = self.variables[dv[1]] if len(names) > 0: for n in names: new_variable_names.append("{0}_{1}".format(dv_txt, n)) else: new_variable_names.append("{0}_total".format(dv_txt)) return new_variable_names, factor_combinations
[docs] def reset(self, data_folder, file_name, suffix=_default_suffix): """Reset the aggregator class and clear design. Parameters ---------- data_folder : str folder which contains of data of the subjects file_name : str name of the files. All files that start with this name will be considered for the analysis (cf. aggregator.data_files) suffix : str, optional if specified only files that end with this particular suffix will be considered (default=.xpd) """ self._data_folder = data_folder self._file_name = file_name self._data_files = [] self._variables = [] self._dv = [] self._dv_txt = [] self._iv = [] self._iv_txt = [] self._exclusions = [] self._exclusions_txt = [] self._computes = [] self._computes_txt = [] self._recode_txt = [] self._recode = [] self._subject_variables = [] self._last_data = [] self._added_data = [] self._added_variables = [] self._suffix = suffix for flname in _os.listdir(_os.path.dirname(self._data_folder + "/")): if flname.endswith(self._suffix) and flname.startswith( self._file_name): _data, vnames, _subject_info, _comments = \ read_datafile(self._data_folder + "/" + flname) if len(self._variables) < 1: self._variables = vnames else: if vnames != self._variables: message = "Different variables in ".format(flname) message = message + "\n{0}".format(vnames) message = message + "\ninstead of\n{0}".format( self._variables) raise RuntimeError(message) self._data_files.append(flname) if len(self._data_files) < 1: raise Exception("No data files found in {0}".format( self._data_folder)) print "found {0} subject_data sets".format(len(self._data_files)) print "found {0} variables: {1}".format(len(self._variables), self._variables)
@property
[docs] def data_folder (self): """Getter for data_folder.""" return self._data_folder
@property
[docs] def data_files (self): """Getter for data_files. The list of the data files considered for the analysis. """ return self._data_files
@property
[docs] def file_name (self): """Getter for file_name.""" return self._file_name
@property
[docs] def variables (self): """Getter for variables. The specified variables including the new computer variables and between subject variables and added variables. """ variables = _copy(self._variables) variables.extend(self._subject_variables) variables.extend(self._added_variables) return variables
@property
[docs] def added_variables(self): """Getter for added variables.""" return self._added_variables
@property
[docs] def computed_variables(self): """Getter for computed variables.""" return self._computes_txt
@property
[docs] def variable_recodings(self): """Getter for variable recodings.""" return self._recode_txt
@property
[docs] def subject_variables(self): """Getter for subject variable.""" return self._subject_variables
@property
[docs] def exclusions(self): """Getter for exclusions.""" return self._exclusions_txt
@property
[docs] def dependent_variables(self): """Getter for dependent variables.""" return self._dv_txt
@property
[docs] def independent_variables(self): """Getter for independent_variables.""" return self._iv_txt
[docs] def get_data(self, filename, recode_variables=True, compute_new_variables=True, exclude_trials=True): """Read data from from Expyriment data file. Notes ----- The function can be only applied on data that in aggregator.data_files, that is, on the files that in defined data folder and the start with the experiment name. According to the defined design, the result contains recoded data together with the new computed variables, and the subject variables from the headers of the Expyriment data files. Parameters ---------- filename : str name of the Expyriment data file recode_variables : bool, optional set to False if defined variable recodings should not be applied (default=False) compute_new_variables : bool, optional set to False if new defined variables should not be computed (default=False) exclude_trials : bool, optional set to False if exclusion rules should not be applied (default=False) Returns ------- data : numpy. arry var_names : list list of variable names info : str subject info comment : str comments in data """ # check filename if filename not in self._data_files: raise RuntimeError("'{0}' is not in the data list\n".format(\ filename, self._data_files)) data, _vnames, subject_info, comments = \ read_datafile(self._data_folder + "/" + filename) print " reading {0}".format(filename) if recode_variables: for var_id, recoding in self._recode: for old, new in recoding: for row in range(len(data)): if data[row][var_id] == old: data[row][var_id] = new data = _np.array(data, dtype='|S99') # compute new defined variables and append if compute_new_variables: for new_var_name, var_def in self._computes: if var_def[1] in self._relations: # relations are true or false col = _np.zeros([data.shape[0], 1], dtype=int) idx = self._find_idx(data, var_def[0], var_def[1], var_def[2]) col[idx, 0] = 1 else: # operations try: a = _np.float64([data[:, var_def[0]]]).transpose() second_var_id = self._get_variable_id(var_def[2], False) if second_var_id is not None: b = _np.float64([data[:, second_var_id ]]).transpose() else: b = _np.float64(var_def[2]) except: msg = "Error while computing new variable {0}. " + \ "Non-number in variables of {1}" msg.format(new_var_name, filename) raise RuntimeError(msg) if var_def[1] == "+": col = a + b elif var_def[1] == "-": col = a - b elif var_def[1] == "*": col = a * b elif var_def[1] == "/": col = a / b elif var_def[1] == "%": col = a % b data = _np.concatenate((data, col), axis=1) # add subject information for sv in self.subject_variables: try: info = subject_info[sv] except: info = "nan" col = _np.array([[info for _x in range(data.shape[0])]]) data = _np.c_[data, col.transpose()] # _add_exclusion trials if exclude_trials: for exl in self._exclusions: idx = self._find_idx(data, exl[0], exl[1], exl[2]) if len(idx) > 0: data = _np.delete(data, idx, axis=0) var = _copy(self._variables) var.extend(self._subject_variables) return [data, var, subject_info, comments]
@property
[docs] def concatenated_data(self): """Getter for concatenated_data. Notes ----- Returns all data of all subjects as numpy.array and all variables names (including added variables). According to the defined design, the result contains the new computed variables and the subject variables from the headers of the Expyriment data files. If data have been loaded and no new variable or exclusion has been defined the concatenated_data will merely return the previous data without re-processing. Returns ------- data : numpy.array variables : list of str """ if len(self._last_data) > 0: # data are already loaded and unchanged cdata = self._last_data else: cdata = None for flname in self._data_files: tmp = self.get_data(flname)[0] if cdata is None: cdata = tmp else: cdata = _np.concatenate((cdata, tmp), axis=0) self._last_data = cdata # append added data if len(self._added_variables) > 0: if cdata is not None: cdata = _np.concatenate((cdata, self._added_data), axis=1) else: cdata = self._added_data return [cdata, self.variables]
[docs] def get_variable_data(self, variables): """Returns the column of data as numpy array. Parameters ---------- variables : list of str names of the variables to be extracted Returns ------- data : numpy.array """ if type(variables) != _types.ListType: variables = [variables] cols = [] for v in variables: cols.append(self._get_variable_id(v, throw_exception=True)) data = self.concatenated_data[0] try: data = _np.float64(data[:, cols]) except: data = data[:, cols] return data
[docs] def add_variables(self, variable_names, data_columns): """Adds a new variable to the data. Notes ----- The amount of variables and added columns must match. The added data must also match the number of rows. Note, manually added variables will be lost if cases will be excluded afterwards via a call of the method `set_exclusions`. Parameters ---------- variable_names : str name of the new variable(s) data_columns : numpy.array the new data columns as numpy array """ d = _np.array(data_columns) data_shape = _np.shape(d) if len(data_shape) < 2: d = _np.transpose([d]) data_shape = (data_shape[0], 1) if type(variable_names) != _types.ListType: variable_names = [variable_names] if len(variable_names) != data_shape[1]: raise RuntimeError("Amount of variables and added colums doesn't fit.") if data_shape[0] != _np.shape(self.concatenated_data[0])[0]: raise RuntimeError("Number of rows doesn't match.") self._added_variables.extend(variable_names) if len(self._added_data) == 0: self._added_data = d else: self._added_data = _np.concatenate((self._added_data, d), axis=1) self._last_data = []
[docs] def write_concatenated_data(self, output_file=None, delimiter=','): """Concatenate data and write it to a csv file. Parameters ---------- output_file : str, optional name of data output file If no specified data will the save to {file_name}.csv delimiter : str delimiter character (default=",") """ if output_file is None: output_file = "{0}.csv".format(self.file_name) data = self.concatenated_data write_csv_file(filename=output_file, data=data[0], varnames=data[1], delimiter=delimiter)
[docs] def set_independent_variables(self, variables): """Set the independent variables. Parameters ---------- variables : str or list the name(s) of one or more data variables (aggregator.variables) """ if type(variables) != _types.ListType: self._iv_txt = [variables] else: self._iv_txt = variables self._iv = [] for v in self._iv_txt: self._add_independent_variable(v) self._last_data = []
[docs] def set_dependent_variables(self, dv_syntax): """Set dependent variables. Parameters ---------- dv_syntax : str or list syntax describing the dependent variable by a function and variable, e.g. mean(RT) Notes ----- Syntax:: {function}({variable}) {function} -- mean, median, sum, std or n_trials Note: n_trials counts the number of trials and does not require a variable as argument {variable} -- a defined data variable """ if type(dv_syntax) != _types.ListType: self._dv_txt = [dv_syntax] else: self._dv_txt = dv_syntax self._dv = [] for v in self._dv_txt: self._add_dependent_variable(v) self._last_data = []
[docs] def set_exclusions(self, rule_syntax): """Set rules to exclude trials from the analysis. The method indicates the rows, which are ignored while reading the data files. It can therefore not be applied on variables that have been added later via `add_variables` and results in a loss of all manually added variables. Setting exclusions requires re-reading of the data files and might be therefore time consuming. Thus, call this mathod always at the beginning of your analysis script. Parameters ---------- rule_syntax : str or list A string or a list of strings that represent the rules to exclude trials Notes ----- Rule syntax:: {variable} {relation} {variable/value} {variable} -- a defined data variable {relation} -- ==, !=, >, <, >=, <=, => or <= {value} -- string or numeric """ if type(rule_syntax) != _types.ListType: self._exclusions_txt = [rule_syntax] else: self._exclusions_txt = rule_syntax self._exclusions = [] for r in self._exclusions_txt: self._add_exclusion(r) self._last_data = [] self._added_data = [] self._added_variables = []
[docs] def set_variable_recoding(self, recoding_syntax): """Set syntax to recode variables. The method defines the variables, which will recoded. It can not be applied on variables that have been added later via `add_variables`. Recoding variables requires re-reading of the data files and might be therefore time consuming. Parameters ---------- rule_syntax : str or list A string or a list of strings that represent the variable recoding syntax Notes ----- Recoding syntax:: {variable}: {old_value1} = {new_value1}, {old_value2} = {new_value2},... """ if type(recoding_syntax) != _types.ListType: self._recode_txt = [recoding_syntax] else: self._recode_txt = recoding_syntax self._recode = [] for syntax in self._recode_txt: self._add_variable_recoding(syntax) self._last_data = []
[docs] def set_subject_variables(self, variables): """Set subject variables to be considered for the analysis. The method sets the subject variables. Subject variables are between subject factors or other variables defines in the subject information section (#s) of the Expyriment data file. The method requires a re-reading of the data files and might be therefore time consuming. Parameters ---------- variables : str or list A string or a list of strings that represent the subject variables """ if type(variables) != _types.ListType: self._subject_variables = [variables] else: self._subject_variables = variables self._last_data = []
[docs] def set_computed_variables(self, compute_syntax): """Set syntax to compute new variables. The method defines the variables, which will be computed. It can not be applied on variables that have been added manually via `add_variables`. The method requires a re-reading of the data files and might be therefore time consuming. Parameters ---------- compute_syntax : str or list A string or a list of strings that represent the syntax to compute the new variables Notes ----- Compute Syntax:: {new-variable} = {variable} {relation/operation} {variable/value} {new-variable} -- a new not yet defined variable name {variable} -- a defined data variable {relation} -- ==, !=, >, <, >=, <=, => or <= {operation} -- +, -, *, / or % {value} -- string or numeric """ if type(compute_syntax) != _types.ListType: self._computes_txt = [compute_syntax] else: self._computes_txt = compute_syntax self._computes = [] self._variables = read_datafile(self._data_folder + "/" + self._data_files[0], only_header_and_variable_names=True)[1] # original variables for syntax in self._computes_txt: self._add_compute_variable(syntax) self._last_data = []
[docs] def print_n_trials(self, variables): """Print the number of trials in the combinations of the independent variables. Notes ----- The functions is for instance useful to quickly check the experimental design. Parameters ---------- variables : str or list A string or a list of strings that represent the names of one or more data variables (aggregator.variables) """ old_iv = self._iv old_dv = self._dv self.set_dependent_variables("n_trials") self.set_independent_variables(variables) result, varnames = self.aggregate() for row in result: print "Subject {0}".format(row[0]) for cnt, var in enumerate(varnames): if cnt > 0: print "\t{0}:\t{1}".format(var[4:], row[cnt]) print "\n" self._dv = old_dv self._iv = old_iv
[docs] def aggregate(self, output_file=None, column_subject_id=0): """Aggregate the data as defined by the design. The design will be printed and the resulting data will be return as numpy.array together with the variable names. Parameters ---------- output_file : str, optional name of data output file. If this output_file is defined the function write the results as csv data file subject variable : int, optional data column containing the subject id (odefault=0) Returns ------- result : numpy.array new_variable_names : list of strings """ data, _variables = self.concatenated_data subjects = list(set(data[:, column_subject_id])) subjects.sort() # get all iv values iv_values = [] for iv in self._iv: tmp = list(set(data[:, iv])) tmp.sort() iv_values.append(tmp) new_variable_names, combinations = self._get_new_variables(iv_values) if len(combinations) == 0: combinations = ["total"] # calculate subject wise result = None for sub in subjects: mtx = data[data[:, column_subject_id] == sub, :] row = [sub] # subject info for sv in self.subject_variables: row.append(mtx[0, self._get_variable_id(sv)]) for dv in self._dv: for fac_cmb in combinations: if fac_cmb == "total": idx = range(0, mtx.shape[0]) else: # find idx of combinations idx = None for c, iv in enumerate(self._iv): tmp = _np.array(mtx[:, iv] == fac_cmb[c]) if idx is None: idx = tmp.copy() else: idx = idx & tmp # calc mean over idx if len(idx) > 0: values = mtx[idx, dv[1]] if dv[0] == "median": row.append(_np.median(_np.float64(values))) elif dv[0] == "mean": row.append(_np.mean(_np.float64(values))) elif dv[0] == "sum": row.append(_np.sum(_np.float64(values))) elif dv[0] == "std": row.append(_np.std(_np.float64(values))) elif dv[0] == "n_trials": row.append(values.shape[0]) else: row.append(_np.NaN) else: row.append(_np.NaN) if result is None: result = _np.array([row], dtype='|S99') else: result = _np.r_[result, [row]] if output_file is not None: write_csv_file(output_file, result, new_variable_names) return result, new_variable_names